Operator Properties
Hermitian:  | 
(93) | 
Unitary:  | 
(94) | 
Orthogonal:  | 
(95) | 
 
Pauli Spin Matrices:
  | 
(96) | 
  | 
(97) | 
  | 
(98) | 
  | 
(99) | 
  | 
(100) | 
  | 
(101) | 
  | 
(102) | 
 
Density Matrix:
  | 
(103) | 
  | 
(104) | 
  | 
(105) | 
Pure ensemble;      idempotent   | 
(106) | 
 
Raising and Lowering operators (SHO)
  | 
(107) | 
  | 
(108) | 
  | 
(109) | 
  | 
(110) | 
  | 
(111) | 
 
Bose-Einstein Distribution
Fermi-Dirac Distribution
Angular Momentum
![$\displaystyle [J_i,J_j] = i\hbar \epsilon_{ijk}J_k$](img182.svg)  | 
(117) | 
![$\displaystyle [\mathbf{J}^2,J_k] = 0$](img183.svg)  | 
(118) | 
Ladder operators: ![$\displaystyle J_{\pm} = J_x \pm iJ_y
[J_+,J_-] = 2\hbar J_z$](img184.svg)  | 
(119) | 
![$\displaystyle [J_z,J_{\pm}]=\pm\hbar J_{\pm}$](img185.svg)  | 
(120) | 
  | 
(121) | 
  | 
(122) | 
  | 
(123) | 
 
Time independent Perturbation theory
Non-degenerate case:
Expand   | 
(124) | 
  | 
    | 
| Collect like-terms: | 
    | 
  | 
(125) | 
  | 
(126) | 
  | 
(127) | 
| Etc. | 
    | 
 
Lippman-Schwinger Equation
Integral form:
  | 
(128) | 
| Iterate recursively | 
    | 
| (First order is the Born Approximation) | 
    | 
  | 
(129) | 
  | 
    | 
 
This is the integral form. To get the Born approximation, transform into the momentum basis, and investigate the regime where 

 for large 

...
 
Born Approximation (scattering)
  | 
(130) | 
| Spherically symmetric solution; | 
    | 
  | 
(131) | 
  | 
(132) | 
 
Fermi's Golden Rule
  | 
(133) | 
 
If you wait long enough, the total transition rates becomes constant (time independent).
Variational Method (Ground State):
  | 
(134) | 
Solve in terms of   | 
    | 
  | 
(135) | 
Solve for      and plug into E. | 
    | 
 
Adiabatic and Sudden approximations
![$\displaystyle \dot{c}_m(t) = -c_m(t)\left\langle m;t\right\vert\big[\frac{\partial}{\partial t} \left\vert m;t\right\rangle \big]$](img206.svg)  | 
(136) | 
  | 
    | 
| In the adiabatic approximation, the second term disappears. | 
    | 
  | 
(137) | 
sudden,   | 
    | 
     as   | 
    | 
 
Schrodinger, Hamiltonian,
Interaction Pictures:
|   | 
operators | 
wavefunc/ket | 
| Schrodinger | 
Time independent | 
  | 
|   | 
A | 
Evolve in time | 
| Heisenberg | 
Time Evolution | 
  | 
|   | 
  | 
No evolution | 
| Interaction | 
  | 
  | 
|   | 
  | 
evolution by | 
|   | 
evolution with un- | 
  | 
|   | 
perturbed hamiltonian | 
  |