Quantum Mechanics

Operator Properties

Hermitian:$\displaystyle H^{\dagger} = (H^{*})^{-1} = H$ (93)
Unitary:$\displaystyle U^{-1}U = UU^{-1} = \mathbb{1}$ (94)
Orthogonal:$\displaystyle O^{\dagger}O = \mathbb{1}$ (95)


$\displaystyle \begin{bmatrix}
a & b\\
c & d
\end{bmatrix}^{-1}
= \frac{1}{det}
\begin{bmatrix}
d & -b\\
-c & a
\end{bmatrix}$

Pauli Spin Matrices:

$\displaystyle \sigma_x = \begin{bmatrix}
0 & 1\\
1 & 0
\end{bmatrix}$ (96)
$\displaystyle \sigma_y = \begin{bmatrix}
0 & -i\\
i & 0
\end{bmatrix}$ (97)
$\displaystyle \sigma_z = \begin{bmatrix}
1 & 0\\
0 & -1
\end{bmatrix}$ (98)
$\displaystyle \mathbb{1} = \delta_{ij}$ (99)
$\displaystyle \sigma_i\sigma_j = i\sigma_k$ (100)
$\displaystyle \sigma_i^2 = \mathbb{1}$ (101)
$\displaystyle \mathbf{\sigma} = \sigma_x\hat{x} + \sigma_y\hat{y} + \sigma_z \hat{z}$ (102)


Density Matrix:

$\displaystyle \rho = \sum_i w_i \left\vert a^i\right\rangle \left\langle a^i\right\vert$ (103)
$\displaystyle Tr(\rho)=1$ (104)
$\displaystyle Tr(\rho A) = \langle A\rangle$ (105)
Pure ensemble; $\displaystyle \rho$    idempotent $\displaystyle (\rho^2 = \rho)$ (106)


Raising and Lowering operators (SHO)

$\displaystyle a^{\pm} = \big(\frac{m\omega}{2\hbar}\big)^{1/2} x \mp i \big(\frac{1}{2\hbar\omega m}\big)^{1/2} p$ (107)
$\displaystyle x = c_1 (a + a^{\dagger}); p = c_2 (a - a^{\dagger} )$ (108)
$\displaystyle a \left\vert n\right\rangle = \sqrt{n}\left\vert n-1\right\rangle$ (109)
$\displaystyle a^{\dagger}\left\vert n\right\rangle = \sqrt{n+1} \left\vert n+1\right\rangle$ (110)
$\displaystyle a^{\dagger}a\left\vert n\right\rangle = n\left\vert n\right\rangle$ (111)


Bose-Einstein Distribution

$\displaystyle \mathcal{Z} = \sum^{\infty}_{n=0}(e^{\mu\beta} e^{-E\beta})^N$ (112)
$\displaystyle \rightarrow \boxed{\frac{1}{1 - e^{(E - \mu)\beta}} = \mathcal{Z}}$ (113)
$\displaystyle n = \frac{1}{\beta}\frac{\partial^2ln(\mathcal{Z})}{\partial\mu^2} \rightarrow$ (114)
$\displaystyle \langle n\rangle = \big[\exp{(E-\mu)\beta} - 1\big]^{-1}$    


Fermi-Dirac Distribution

$\displaystyle \mathcal{Z} = e^{0\mu \beta- 0\beta} + e^{\mu \beta - \epsilon \beta}$ (115)
$\displaystyle = 1 + e^{(\mu - \epsilon) \beta}$    
$\displaystyle N = kT\frac{\partial}{\partial \mu}ln\mathcal{Z}$ (116)
$\displaystyle \boxed{= \frac{1}{e^{(\epsilon - \mu})\beta}+1}$    


Angular Momentum

$\displaystyle [J_i,J_j] = i\hbar \epsilon_{ijk}J_k$ (117)
$\displaystyle [\mathbf{J}^2,J_k] = 0$ (118)
Ladder operators: $\displaystyle J_{\pm} = J_x \pm iJ_y
[J_+,J_-] = 2\hbar J_z$ (119)
$\displaystyle [J_z,J_{\pm}]=\pm\hbar J_{\pm}$ (120)
$\displaystyle J^2\left\vert j,m\right\rangle = j(j+1)\hbar^2\left\vert j,m\right\rangle$ (121)
$\displaystyle J_z\left\vert j,m\right\rangle = m\hbar\left\vert j,m\right\rangle$ (122)
$\displaystyle J_{\pm} \left\vert j,m\right\rangle = \sqrt{(j\mp m)(j \pm m + 1)}\hbar \left\vert j, m\pm 1\right\rangle$ (123)


Time independent Perturbation theory
Non-degenerate case:

Expand $\displaystyle H_0 + H', E = E_0 + \lambda E_1 + \lambda^2 E_2...$ (124)
$\displaystyle \left\vert\psi\right\rangle = \left\vert n_0\right\rangle + \lambda \left\vert n_1\right\rangle + \lambda^2 \left\vert n_2\right\rangle ...$    
Collect like-terms:    
$\displaystyle E_1 = \left\langle n_0\right\vert H' \left\vert n_0\right\rangle$ (125)
$\displaystyle \left\vert n_1\right\rangle = \sum_{m=1_, m\neq n}^{\infty} \frac...
...H'\left\vert n_0\right\rangle }{E_n^{(0)}-E_m^{(0)}}\left\vert m_0\right\rangle$ (126)
$\displaystyle E2 =\sum_{m=1_, m\neq n}^{\infty} \frac{\left\vert\left\langle m_0\right\vert H'\left\vert n_0\right\rangle \right\vert^2}{E_n^{(0)}-E_m^{(0)}}$ (127)
Etc.    


Lippman-Schwinger Equation
Integral form:

$\displaystyle \left\vert\psi^+\right\rangle = \left\vert i\right\rangle + \frac{1}{E_i - H_0 + i \hbar \epsilon}V\left\vert\psi^+\right\rangle$ (128)
Iterate recursively    
(First order is the Born Approximation)    
$\displaystyle \psi^{\pm}(\mathbf{x},t) = \phi^{\pm}(\mathbf{x},t) - \frac{m}{2\pi\hbar^2}\int_{\infty}^{\infty}d\mathbf{x'}$ (129)
$\displaystyle \times \frac{e^{ \pm i k \left\vert\mathbf{x}-\mathbf{x'}\right\v...
...ft\vert\mathbf{x}-\mathbf{x'}\right\vert}V(\mathbf{x'}\psi^{\pm}(\mathbf{x'},t)$    


This is the integral form. To get the Born approximation, transform into the momentum basis, and investigate the regime where $\left\vert\mathbf{x}-\mathbf{x'}\right\vert\rightarrow r$ for large $r$...

Born Approximation (scattering)

$\displaystyle f^{(1)}(k,k') = \frac{-m}{\hbar^2 2 \pi}\int_{\infty}^{\infty}e^{i(\mathbf{k}-\mathbf{k'})\cdot\mathbf{r}} V(\mathbf{r})d^3\mathbf{r}$ (130)
Spherically symmetric solution;    
$\displaystyle f^{(1)}(\theta) = \frac{-2m}{\hbar^2q} \int_0^{\infty} r dr V(r) sin(qr)$ (131)
$\displaystyle \frac{d\sigma}{d\Omega} = \left\vert(f^{(1)}(\theta)\right\vert^2$ (132)


Fermi's Golden Rule

$\displaystyle w_{ij} = \frac{2\pi}{\hbar}\left\vert\left\langle\psi_f\right\vert V\left\vert\psi_i\right\rangle \right\vert^2 \rho(E_i)$ (133)


If you wait long enough, the total transition rates becomes constant (time independent).

Variational Method (Ground State):

$\displaystyle E = \frac{\left\langle\alpha\right\vert H\left\vert\alpha\right\rangle }{\langle\alpha\vert\alpha\rangle }$ (134)
Solve in terms of $\displaystyle \alpha$    
$\displaystyle \frac{dE}{d\alpha} = 0\iff E = E_0;$ (135)
Solve for $\displaystyle \alpha$    and plug into E.    


Adiabatic and Sudden approximations

$\displaystyle \dot{c}_m(t) = -c_m(t)\left\langle m;t\right\vert\big[\frac{\partial}{\partial t} \left\vert m;t\right\rangle \big]$ (136)
$\displaystyle - \sum_n c_n(t) e^{i(\theta_n-\theta_m)} \frac{\left\langle m;t\right\vert H\left\vert n;t\right\rangle }{E_n-E_m}$    
In the adiabatic approximation, the second term disappears.    
$\displaystyle i\frac{\partial}{\partial s} U(t,t_0) = \frac{H}{\hbar/T}U(t,t_0)=\frac{H}{\hbar\Omega} U(t,t_0)$ (137)
sudden, $\displaystyle T\rightarrow 0, \hbar\Omega>>H$    
$\displaystyle U(t,t_0)\rightarrow 1$    as $\displaystyle T\rightarrow 0$    


Schrodinger, Hamiltonian,
Interaction Pictures:
  operators wavefunc/ket
Schrodinger Time independent $\left\vert\psi(t)\right\rangle _s$
  A Evolve in time
Heisenberg Time Evolution $e^{iHt} \left\vert\psi\right\rangle _s = \left\vert\psi\right\rangle _H$
  $U^{\dagger}AU = A_H$ No evolution
Interaction $U^{\dagger}AU$ $\left\vert\psi\right\rangle _I = e^{iH_0t}\left\vert\psi(t)\right\rangle _s$
  $e^{iH_0t} A e^{-iH_0 t} = A_I$ evolution by
  evolution with un- $V_I$
  perturbed hamiltonian