Electrodynamics

Potential energy (charges); Electrostatic force from surface charge:

$\displaystyle w = \frac{1}{2} \int_v \rho(x) \Phi(x) d^3x,$ (32)
$\displaystyle \mathbf{F} = \int \frac{\sigma^2}{2\epsilon_0} d\mathbf{a}$ (33)


Poynting vector:

$\displaystyle \mathbf{s} = \frac{1}{\mu_0}\big(\mathbf{E}\times\mathbf{B}\big)$ (34)
$\displaystyle \frac{\partial u}{\partial t} = - \nabla \cdot \mathbf{s}$ (35)
$\displaystyle \partial_{\mu}s^{\mu} = 0$ (36)
$\displaystyle \partial_{\mu} J^{\mu} = 0$ (37)
$\displaystyle \mathbf{\mathcal{P}}_{em} = \frac{1}{c^2} \mathbf{s}$ (38)


Helmholtz Equation + Dirchlet Equation:

$\displaystyle (\nabla^2 + k^2) \psi = -\delta(r-r_0)$ (39)
$\displaystyle \int dV [ \psi (\nabla^2 + k^2) \phi - \phi (\nabla^2 + k^2) \psi ]$ (40)
$\displaystyle \int d\mathbf{s} \cdot(\psi \nabla\phi - \phi \nabla \psi)$    


Free current density + conductivity:

$\displaystyle \mathbf{J} = qN \mathbf{v}_{drift} = \frac{n\mathbf{I}}{a}$ (41)
$\displaystyle \sigma = \frac{J}{\epsilon}$ (42)


Surface charge induced + Spherical method of images:

$\displaystyle \sigma = - \epsilon_0 \frac{\partial \phi}{\partial}{\eta}$ (43)
$\displaystyle q' = \frac{-a}{y} q$ (44)
$\displaystyle \frac{q'}{y'} = \frac{-q}{a}$ (45)
$\displaystyle \Phi = \sum_i \phi_i$ (46)
$\displaystyle \textbf{TODO: Image Needed Here}$ (47)


Brewster Angle:

$\displaystyle \theta = \tan^{-1} n$ (48)
Total internal reflection (P-waves)    


Energy in external magnetic field:

$\displaystyle U = -\mathbf{mu} \cdot \mathbf{B}$ (49)
$\displaystyle U = -\mu \mathbf{\sigma} \cdot \mathbf{B}$ (50)
Where $\displaystyle \sigma$   iis the Pauli vector    


Magnetic Forces:

$\displaystyle \mathbf{F}_m = \int dq (\mathbf{v} \times \mathbf{B}) = \int d \mathbf{l }\lambda (\mathbf{v}\times\mathbf{B})$ (51)
$\displaystyle \lambda \mathbf{V} = \mathbf{I};$ (52)
$\displaystyle \boxed{\int (\mathbf{I}\times\mathbf{B})\cdot d\mathbf{l} = \mathbf{L} }$ (53)
$\displaystyle \boxed{\mathbf{F} = \int (\mathbf{J} \times \mathbf{B}) d \tau}$ (54)


Kirchoff approximation:

$\displaystyle \psi(r') = \frac{- i k}{2\pi} \frac{e^{ik(r_0 + r')}}{r_0r'}\int_{\sigma}dxdy e^{i\mathbf{q}\cdot\mathbf{x}}$ (55)
$\displaystyle I = \left\vert\psi(r')\right\vert^2$ (56)


This is the Fourier transform of the aperture shape. Note the similarity to the Born approximation...

$\displaystyle \sim \frac{e^{ikr}}{r^2}$ (57)

Maxwell-Faraday equation: Faraday's law of induction.

$\displaystyle \nabla \times \mathbf{E} = \frac{\partial^2\mathbf{B}}{\partial t^2} \cdot d\mathbf{a}$ (58)
$\displaystyle \oint \nabla \times \mathbf{E} \cdot d\mathbf{a} = - \int \frac{\partial^2\mathbf{B}}{\partial t^2}\cdot d\mathbf{a}$ (59)
$\displaystyle \oint \mathbf{E} \cdot d\mathbf{l} = - \frac{d}{dt} \iint \mathbf{B} \cot d\mathbf{a}$ (60)


The voltage induced in a closed circuit is proportional to the rate of change of magnetic flux enclosed.

Biot-Savart law:

$\displaystyle \mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I} \times \hat{r} }{r^2} dl'$ (61)
$\displaystyle = \frac{\mu_0}{4\pi} I \int \frac{d\mathbf{l}\times \hat{r}}{r^2}$    


Polarization, electric dipole moment:

$\displaystyle \mathbf{P} = \int r' \rho(r')d\tau' = \sum_{i=1} q_i\mathbf{r}_i'$ (62)
$\displaystyle V_{dipole}(r) = \frac{1}{4\pi\epsilon_0}\frac{\mathbf{P}\cdot\hat{r}}{r^2}$ (63)
$\displaystyle \mathbf{P} = \mathcal{N}<\mathbf{P}>$ (64)
$\displaystyle \mathbf{E}_{dip}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0r^3}\big[3(\mathbf{p}\cdot\hat{r})\hat{r} - \mathbf{p}\big]$ (65)
$\displaystyle \sigma_b = \mathbf{p}\dot\hat{n}$ (66)
$\displaystyle \rho_b = -\nabla\cdot\mathbf{p}$ (67)
$\displaystyle \rho_T=\nabla\cdot(\epsilon_0\mathbf{E}-\mathbf{P})$ (68)
$\displaystyle \epsilon_0 \mathbf{E}-\mathbf{P}=\mathbf{D}$ (69)


Maxwell/Ampere Law (differential + integral forms):

$\displaystyle \nabla\times\mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2}$ (70)
$\displaystyle \iint \nabla\times\mathbf{B} \cdot d\mathbf{a} = \mu_0 \iint \mat...
...\cdot d\mathbf{a} + \frac{1}{c^2} \frac{d}{dt}\iint \mathbf{E}\cdot d\mathbf{a}$ (71)
$\displaystyle \oint \mathbf{B}\cdot d\mathbf{l} = \mu_0 \iint \mathbf{J} \cdot d\mathbf{a} + \frac{1}{c^2} \frac{d}{dt} \iint \mathbf{E} \cdot d\mathbf{a}$ (72)


Magnetic field induced around closed loop $\propto$ electric current + displacement current enclosed.

Gauss' Law (Diff+Int):

$\displaystyle \frac{Q}{\epsilon_0} = \oiint \mathbf{E} \cdot d \mathbf{a} = \iiint \nabla\cdot\mathbf{E}\cdot d\mathbf{V}$ (73)
$\displaystyle \nabla\cdot\mathbf{E} = \frac{\rho}{\epsilon_0}$ (74)


Electric flux leaving volume $\propto$ charge inside.

Magnetic Dipole:

Maxwell Stress Tensor:

$\displaystyle T_{ij} = \epsilon_0\big[E_iE_j - \frac{1}{2}\delta_{ij}E^2 \big] +$ (75)
$\displaystyle \frac{1}{\mu_0}\big[B_iB_j - \frac{1}{2} \delta{ij}B^2 \big]$    
$\displaystyle \frac{\partial^2\mathbf{\mathcal{P}}_{mech}+\mathbf{\mathcal{P}}_{em}}{\partial t^2} = \nabla\cdot\mathbf{T}$ (76)
$\displaystyle \mathbf{\mathcal{P}}_{em} = \mu_0\epsilon_0 \mathbf{s}$ (77)


Energy in a capacitor/inductor:

$\displaystyle dV = \frac{dq}{C} \rightarrow qdV = dU = \frac{qdq}{C}$ (78)
$\displaystyle U = \frac{q^2}{2C} = \frac{1}{2} vq = \boxed{\frac{1}{2} cv^2 = U}$ (79)
$\displaystyle (V=L\dot{I})I;$     $\displaystyle IV = IL\dot{I}=P$ (80)
$\displaystyle P = LI\frac{dI}{dt}$ (81)
$\displaystyle \int dPdE = \int L I dI$ (82)
$\displaystyle \boxed{U=\frac{1}{2} L I^2}$ (83)


Energy of dialectrics, paramagnets:

$\displaystyle w = \frac{\epsilon_0}{2} \epsilon_r E^2 d\tau = \frac{1}{2}\int \mathbf{D}\mathbf{E}d\tau$ (84)
$\displaystyle w = \frac{1}{2\mu_0} \int \mathbf{H}\mathbf{B}d\tau$ (85)
$\displaystyle u_{em} = \frac{1}{2} (\mathbf{E}\cdot\mathbf{D} + \mathbf{B}\cdot\mathbf{H})$ (86)


$\textbf{Electric and Magnetic field relations:}$

$\displaystyle \mathbf{k}\times\mathbf{E} = \mu \omega \mathbf{H}$ (87)
$\displaystyle \mathbf{k}\times\mathbf{H} = -\epsilon \omega \mathbf{E}$ (88)
$\displaystyle \mathbf{k} \cdot \mathbf{E} = 0$ (89)
$\displaystyle \mathbf{k} \cdot \mathbf{H} = 0$ (90)
$\displaystyle \mathbf{B} = \mp \frac{i\mathbf{E}}{c}$ (91)
$\displaystyle E_1 = Ecos\theta$ (92)
$\displaystyle I_1 = Icos^2\theta$    
$\displaystyle \mathbf{k}\cdot \mathbf{r} = \mathbf{k''} \cdot \mathbf{r}$    (boundaries)    


TODO: PICTURE