Statistical Mechanics

Common 'Energies'
Strictly speaking, all of these should probably factor in the particle number and chemical potential, $+\mu N$.

Ensembles:

Equipartition Theorem
At temperature T, the average energy of a quadratic degree of freedom $=\frac{1}{2}kT$

$\displaystyle U_{thermal} = N\cdot f \cdot \frac{1}{2} kT$ (142)
$\displaystyle \frac{1}{2}mv_i^2, \frac{1}{2}I\omega_i^2, \frac{1}{2}k_sx^2,$   etc$\displaystyle .$ (143)


Entropy, Fluctuations, Heat Capacity

$\displaystyle S = k\ln{\Omega} $ (144)
$\displaystyle \Delta S = \int \frac{dQ}{T}$ (145)
$\displaystyle S = \beta(\langle E\rangle -\langle F\rangle )$ (146)
$\displaystyle S = -\sum_i \mathcal{P}_i\ln\mathcal{P}_i$ (147)
$\displaystyle S = -k Tr(\rho \ln\rho)$ (148)
$\displaystyle \langle(\Delta E)^2\rangle = \frac{\partial^2\ln \mathcal{Z}}{\partial\beta^2}$ (149)
$\displaystyle C_v = \frac{\partial\langle E\rangle }{\partial T} = \frac{\beta}{T}\langle(\Delta E )^2\rangle$ (150)


Blackbody Radiation

$\displaystyle \mathcal{Z} = \sum_n e^{-\beta \hbar \omega n} = \frac{1}{1 - e^{-\beta \hbar \omega}}$ (151)
$\displaystyle d^3n = \frac{V}{h^3} \int d^3p = \frac{4\pi V}{h^3}\hbar^3 \int k^2 dk$ (152)
$\displaystyle (p=\hbar k, \omega=ck)$    From here on, $\displaystyle \hbar = c = 1$    
$\displaystyle u = -\frac{\partial\ln{\mathcal{Z}}}{\partial\beta}$    
$\displaystyle \rightarrow U = (2) \frac{4\pi V}{(2\pi)^3}\int \frac{\omega k^2}{1 - e^{-\beta\omega}}dke^{-\beta\omega}$    
$\displaystyle \frac{U}{V} = \frac{8\pi}{(2\pi)^3}\int \frac{k^3dk}{1-e^{-\beta k}}e^{-\beta k}$ (153)
$\displaystyle \beta k = x, \beta dk = dx;$    
$\displaystyle \int \frac{x^3dx}{e^x - 1} = ...$    
$\displaystyle \boxed{\frac{U}{V} = \frac{8\pi}{(2\pi)^3}(kT)^4\int\frac{x^3dx}{e^x-1}}$ (154)
$\displaystyle \boxed{ = \frac{\pi^2(kT)^4}{15\hbar^3 c^3} \equiv \sigma T^4}$ (155)


With a 2 added somewhere along the way to properly count polarization modes.

Fugacity, q-potential, average particle number:

$\displaystyle f = e^{\mu\beta}$ (156)
$\displaystyle \mathcal{Z}=\sum_{N=0}^{\infty} \Omega \big[ f e^{- \beta E} \big]^N$ (157)
$\displaystyle \boxed{\langle n\rangle = \frac{1}{\beta} \frac{\partial\ln{\mathcal{Z}}}{\partial\mu}}$ (158)




Subsections